Linear Diophantine Equations (LDEs)

Definition 1
An equation of the form

ax1+axp+---+apxp=>b (1)

with ai, as, ..., ap, b integers, is called a linear Diophantine
equation (LDE).

Theorem 2
The LDE
aix1+axxo+---+anxpn=>b

has a solution xi,...,x, € Z if and only if gcd(a1, az,...,an)|b



Quadratic Diophantine Equations (QDEs)

Definition 3
An equation of the form

n
> ayxixg=b (2)

ij=1

with aj;, b integers, is called a quadratic Diophantine equation

(QDE).

Example 4 (Pythagorean Equations)
The equation
X2 y? =2

is a QDE. Any solution (x, y, z) of this equation for integers x, y, z
is called a Pythagorean triple.



Pythagorean Equations

Consider the Pythagorean equation:
X2+ y? =272 (3)

» A solution (xo, yo,20) of Eq. (3) where xo, yo, zo are pairwise
relatively prime is called a primitive solution.

> If (xo, ¥0,20) is a solution of Eq. (3) then so are
(:l:Xo, :|:y0, :l:Zo) and (ng, ky(), kZQ).

» Therefore we are most interested in solutions (x, y, z) of Eq.
(3) with all components positive.



Pythagorean Equations

Theorem 5
Any primitive solution of

is of the form

x:mz—nz,y:2mn,z:m2—i—n2

Where m,n > 1 are relatively prime positive integers.



Pell's Equation

Definition 6
Pell's equation has the form

x* —dy? =1 (5)
where d not a perfect square.

Definition 7
We say that (xo, yo) is a fundamental solution of Pell's equation if
Xo, Yo are positive integers that are minimal amongst all solutions.



The Graph of Pell's Equation
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x2-2y2 =1

The equation has the fundamental solution (x, yo) = (3,2).



Pell's Equation

Theorem 8
Pell’s equation has infinitely many solutions. Given the solution
(x0, yo) the solution (Xn+1,Yn+1) is given by

Xp+1 = XoXn + dYoYn, X1 =X0, n>1
Ynt1 = YoXn + XoYn, Y1 =)o, n=>1

Example 9
The equation x? — 2y? = 1, has the fund. sol. (xo,0) = (3,2). So

x2:xg—|—dyg:9+2.4:17, Y2 = YoXo + xoyo =6+6=12

is also a solution: 172 —2.122 = 1.



General Solution of Pell's Equation

Theorem 10
Let Pell’s equation x> — dy? = 1, have the fundamental solution
(%0, ¥0). Then (xn,yn) is also a solution, given by

Xn = %[(Xo + yVd)" + (x0 — yoVd)"]

Yo — Z%M +yoVd)" — (x0 — yoV/d)"]

Example 11
Solve x? — 2y? = 1. The fund. sol. is (3,2). The general solution

IS:

Xn = %[(3+2ﬁ)”+(3—2ﬁ)”], Yn =3 [(3+2v2)"—(3-2v/2)"]

1
22



The General Form of Pell's Equation

Definition 12
The general Pell’'s equation has the form

ax®— by =1

where ab not a perfect square.

The equation
u? —abv? =1

is called the Pell’s resolvent of Eq. (8)



The General Form of Pell's Equation

Theorem 13
Let
ax®— by’ =1

have an integral solution. Let (A, B) solution for least positive
A, B. The general solution is
X, = Au, + bBv,
(10)
¥Yn = Bu, + aAv,

Where (up, vp) is the general solution of Pell’s resolvent
u? —abv? = 1.



The General Form of Pell's Equation

Example 14
Solve

6x> —5y* =1 (11)

The fund. sol. is (x,y) = (A, B) = (1,1). The resolvent is
u? —30v? = 1, with fund. sol. (up, vo) = (11,2). The general
solution of the resolvent is

Uy = %[(11 +2v/30)" + (11 — 2v/30)"]

(11 +2v/30)" — (11 — 2v/30)"]

1
Vp = ——
2\/30[

The general solution of Eq. (11) is

Xp = Up+5Vn, Yn = Up+6v,



Training Problem 1

Problem 1
Find all integers n > 1 such that 2n+ 1 and 3n+ 1 are both
perfect squares.



Training Problem 1

Problem 1
Find all integers n > 1 such that 2n+ 1 and 3n+ 1 are both

perfect squares.
Observe that

2n+1=x%3n+1=y>=3x>-2y%> =1,
with 3.2 = 6 not a square in Z.
So solving this amounts to solving the general form of Pell’s
equation.



The Negative Pell’'s Equation

Definition 15
The negative Pell's equation has the form

x? —dy? = -1

where d not a perfect square.

(12)



The Negative Pell’'s Equation

Definition 15
The negative Pell's equation has the form

x? —dy? = -1 (12)
where d not a perfect square.

Theorem 16

Let (A, B) be the smallest positive solution to Eq. (12). Then the
general solution to Eq. (12) is given by

X, = Au, + dBv,
(13)
¥Yn = Au, + By,

where (up, v,) is the general solution of u?> — dv? = 1.



Training Problem 2

Problem 2
Find all pairs (k, m) such that

142+ +k=(k+1)4+(k+2)+---+m.



Training Problem 2

Problem 2
Find all pairs (k, m) such that

142+ +k=(k+1)4+(k+2)+---+m.

Adding 1 +2 4+ --- + k to both sides of the above equality we get

2k(k+1)=m(m+1) <= 2m+1)> =22k +1)> = —1.



Training Problem 2

Problem 2
Find all pairs (k, m) such that

142+ +k=(k+1)4+(k+2)+---+m.

Adding 1 +2 4+ --- + k to both sides of the above equality we get
2k(k+1)=m(m+1) <= 2m+1)> =22k +1)> = —1.

The associated negative Pell's equation is x> — 2y? = —1 with the
minimal solution (A, B) = (1,1).



Training Problem 3

Problem 3 (Romanian M. Olympiad, 1999)

Show that the equation x* + y3 + z3 = t* has infinitely many
solutions x,y, z, t, € Z with the greatest common divisor 1.



Training Problem 3

Problem 3 (Romanian M. Olympiad, 1999)

Show that the equation x* + y3 + z3 = t* has infinitely many
solutions x,y, z, t, € Z with the greatest common divisor 1.

Start from the equality

n(n+1)\°
[13+23+...—|—(n—2)3]+(n_1)3+n3 - <2>

[(’1_2)2(’1_1)]2+(n1)3+n3 = (”(”;1))2



Training Problem 3

Problem 3 (Romanian M. Olympiad, 1999)

Show that the equation x* + y3 + z3 = t* has infinitely many
solutions x,y, z, t, € Z with the greatest common divisor 1.

Start from the equality

{(”_2)2(”_1)]2+(n1)3+”3 = <n(nz+1)>2
n(n+1) -

Do there exist infinitely many integers n > 1 such that == is a
perfect square?



Training Problem 3

Problem 3 (Romanian M. Olympiad, 1999)

Show that the equation x* + y3 + z3 = t* has infinitely many
solutions x,y, z, t, € Z with the greatest common divisor 1.

Start from the equality

{(”_2)2(”_1)]2+(n1)3+”3 = <n(nz+1)>2
n(n+1) -

Do there exist infinitely many integers n > 1 such that == is a
perfect square?

n(n+1)=n’>+n=2m*> <= 4n*+ 4n=8m?
— (2n+1)2-22m)*> =1

This is Pell's equation, which has infinitely many solutions.



Training Problem 4

Problem 4 (Irish M. Olympiad, 1995)

Determine all integers a such that the equation x> + axy + y®> =1
has infinitely many solutions.



Training Problem 4

Problem 4 (Irish M. Olympiad, 1995)

Determine all integers a such that the equation x> + axy + y®> =1
has infinitely many solutions.

Rewrite the given equation in the form

(2x+ay)® —(a° —4)y* =4 (14)



Training Problem 4

Problem 4 (Irish M. Olympiad, 1995)

Determine all integers a such that the equation x> + axy + y®> =1
has infinitely many solutions.

Rewrite the given equation in the form

(2x+ay)® —(a° —4)y* =4 (14)

1. If a2 — 4 < 0 then we have a finite number of solutions.



Training Problem 4

Problem 4 (Irish M. Olympiad, 1995)

Determine all integers a such that the equation x> + axy + y®> =1
has infinitely many solutions.

Rewrite the given equation in the form

(2x+ay)? — (& —4)y* =4 (14)

1. If a2 — 4 < 0 then we have a finite number of solutions.

2. If a2 — 4 = 0 the equation becomes 2x + ay = £2 with
infinitely many solutions.



Training Problem 4

Problem 4 (Irish M. Olympiad, 1995)

Determine all integers a such that the equation x> + axy + y®> =1
has infinitely many solutions.

Rewrite the given equation in the form

(2x +ay)> —(a° —4)y’ =4 (14)

1. If a2 — 4 < 0 then we have a finite number of solutions.

2. If a2 — 4 = 0 the equation becomes 2x + ay = £2 with
infinitely many solutions.

3. If > — 4 > 0, then a® — 4 cannot be a perfect square and so
the Pell's equation u? — (a®> — 4)v? = 1 has infinitely many
solutions. Letting x = u — av,y = 2v, we also have infinitely
many solutions for a> — 4 > 0



Training Problem 5

Problem 5 (Bulgarian M. Olympiad, 1999)
Solve x3 = y3 + 2y? 41 for integers x, y.



Training Problem 5

Problem 5 (Bulgarian M. Olympiad, 1999)
Solve x3 = y3 + 2y? 41 for integers x, y.
If y? 4 3y > 0 then

<=y 422+ 1< (P +22 + 1)+ (y? +3y) = (v + 1),

which is impossible.



Training Problem 5

Problem 5 (Bulgarian M. Olympiad, 1999)
Solve x3 = y3 + 2y? 41 for integers x, y.
If y? 4 3y > 0 then

<=y 422+ 1< (P +22 + 1)+ (y? +3y) = (v + 1),

which is impossible.
Therefore
Y243y <0 = y=0,-1,-2,-3.

The solution set is (1,0), (1,—-2), (-2, —3).



Training Problem 6

Problem 6
Find positive integers x, y,z such that xy + yz 4+ zx — xyz = 2



Training Problem 6

Problem 6
Find positive integers x, y,z such that xy + yz 4+ zx — xyz = 2

We may assume that x <y < z.



Training Problem 6

Problem 6
Find positive integers x, y,z such that xy + yz 4+ zx — xyz = 2

We may assume that x <y < z.

1. If x =1 then the equationis y +z =2 = (x,y,z) = (1,1,1)



Training Problem 6

Problem 6
Find positive integers x, y,z such that xy + yz 4+ zx — xyz = 2

We may assume that x <y < z.
1. If x =1 then the equationis y +z =2 = (x,y,z) = (1,1,1)

2. If x =2 then the equation is
2y +2z—yz=2=(z-2)(y—-2)=z=4,y =3.



Training Problem 6

Problem 6
Find positive integers x, y,z such that xy + yz 4+ zx — xyz = 2

We may assume that x <y < z.
1. If x =1 then the equationis y +z =2 = (x,y,z) = (1,1,1)
2. If x =2 then the equation is
2y+2z—yz=2=(z-2)(y—-2)=z=4,y=3.
3. If x > 3 then x,y, z, > 3 which yield
xyz > 3xy
xyz > 3yz
xyz > 3zx



Training Problem 6

Problem 6
Find positive integers x, y,z such that xy + yz 4+ zx — xyz = 2

We may assume that x <y < z.
1. If x =1 then the equationis y +z =2 = (x,y,z) = (1,1,1)
2. If x =2 then the equation is
2y+2z—yz=2=(z-2)(y—-2)=z=4,y=3.
3. If x > 3 then x,y, z, > 3 which yield
xyz > 3xy
xyz > 3yz
xyz > 3zx
Adding the above relations it follows that

Xyz > xy +yz4+2zx = xy +yz+zx —xyz < 0 # 2.



Training Problem 7

Problem 7
Find the positive integers x, y, z such that 3* + 4Y = z2.



Training Problem 7

Problem 7
Find the positive integers x, y, z such that 3* + 4Y = z2.

=2 =(z-2)(z+2).
Then

z—2=3"and z+2=3" m>n>0,m+n=x.



Training Problem 7

Problem 7
Find the positive integers x, y, z such that 3* + 4Y = z2.

=2 =(z-2)(z+2).
Then
z—2=3"and z+2=3" m>n>0,m+n=x.
Subtracting,

wHt = 37-3m=3"(3"" 1)
= 3"=1n=x = 3"—1=2"!



Training Problem 7

Problem 7
Find the positive integers x, y, z such that 3* + 4Y = z2.

=2 =(z-2)(z+2).
Then
z—2=3"and z+2=3" m>n>0,m+n=x.
Subtracting,

wHt = 37-3m=3"(3"" 1)
= 3"=1n=x = 3"—1=2"!

1. Ify=0,then n=x=1and z=2.
2. 1fy>1thenx=n=2y=22z=3"-2 =5,



Training Problem 8

Problem 8
Find the positive integers x,y,z such that 3 — 1 = yZ.



Training Problem 8

Problem 8
Find the positive integers x,y, z such that 3* — 1 = yZ.

If z is even we get a contradiction. So z = 2k + 1.



Training Problem 8

Problem 8
Find the positive integers x,y, z such that 3* — 1 = yZ.

If z is even we get a contradiction. So z =2k + 1. Now

3X — yz+1 — y2k+1+1 — (y+1)(y2k_y2k71+y2k72_' . +y2_y+1)



Training Problem 8

Problem 8
Find the positive integers x,y, z such that 3* — 1 = yZ.

If z is even we get a contradiction. So z =2k + 1. Now
3X — yz+1 — y2k+1+1 — (y+1)(y2k_y2k71+y2k72_. . +y2_y+1)
Then y = —1 mod 3.



Training Problem 8

Problem 8
Find the positive integers x,y, z such that 3* — 1 = y?

If z is even we get a contradiction. So z =2k + 1. Now
3 = 7l = 2Rl ] = (1) (PR oy PRl 2he2 2 ),
Then y = —1 mod 3.
y oy 2y 1 =141+---4+1=(2k+1)=0 mod 3.
2k +1
Therefore z = 2k + 1 = 3p, some p:
F=yP+1=(P+1* -y +1) = yP+1=3"

o= 1+y®=1+(3-1)
= 3% _33%>433°
—_ 3$+1(325—1_35+1)
= 3> 1_3=-0 = s=1
— yP=3-1=2 = y=2p=1,x=2,z=3.



Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers a, b,c > 1 such that a® + 1 = (a + 1)¢



Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers a, b,c > 1 such that a® + 1 = (a + 1)¢

1. b=c=1,a>1is a solution. Let b > 2.



Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers a, b,c > 1 such that a® + 1 = (a + 1)¢

1. b=c=1,a>1is a solution. Let b > 2.
2. aP+1=(a+1)°=(-1)»+1=0 moda+1 = bodd



Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers a, b,c > 1 such that a® + 1 = (a + 1)¢

1. b=c=1,a>1is a solution. Let b > 2.
2. aP+1=(a+1)°=(-1)»+1=0 moda+1 = bodd
3. (a+1-1)°2+1=b(a+1)=0 mod (a+1)> = aeven



Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers a, b,c > 1 such that a® + 1 = (a + 1)¢

. b=c=1,a>1is asolution. Let b > 2.
cab+1=(a+1)°=(-1)»+1=0 moda+1 = bodd
(a+1-1)° +1=b(a+1)=0 mod (a+1)> = aeven
caPb+1=1=(a+1)=ca+1l mod a> = ajc = ceven

A w0



Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers a, b,c > 1 such that a® + 1 = (a + 1)¢

b=c=1,a>1is asolution. Let b > 2.
a+1=(a+1)¢=(-1) +1=0 mod a+1 = b odd
(a+1-1)° +1=b(a+1)=0 mod (a+1)> = aeven
aP+1=1=(a+1)°=ca+1 mod a®> = alc = ceven
(2x)P=(a+1)¥ —1=[(a+ 1) —1][(a+ 1) +1]

o b=



Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers a, b,c > 1 such that a® + 1 = (a + 1)¢

b=c=1,a>1is asolution. Let b > 2.
a+1=(a+1)¢=(-1) +1=0 mod a+1 = b odd
(a+1-1)° +1=b(a+1)=0 mod (a+1)> = aeven
aP+1=1=(a+1)°=ca+1 mod a®> = alc = ceven
(2x)P = (a+ 1) — 1= [(a+ 1) —[(a+ 1 +1]
ged((a+1)Y —1,(a+ 1) +1)=2

I o



Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers a, b,c > 1 such that a® + 1 = (a + 1)¢

b=c=1,a>1is asolution. Let b > 2.
a+1=(a+1)¢=(-1) +1=0 mod a+1 = b odd
(a+1-1)° +1=b(a+1)=0 mod (a+1)> = aeven
aP+1=1=(a+1)°=ca+1 mod a®> = alc = ceven
(2x) = (a+ 1) =1 = [(a+ 1) — 1][(a + 1) + 1]
gad((a+1) —1,(a+ 1) +1)=2

x|(a+1) —1=02x+1)Y -1 = (a+1)Y -1=2xP

No oA~



Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers a, b,c > 1 such that a® + 1 = (a + 1)¢

O N O~ =

b=c=1,a>1is asolution. Let b > 2.
a+1=(a+1)¢=(-1) +1=0 mod a+1 = b odd
(a+1-1)° +1=b(a+1)=0 mod (a+1)> = aeven
aP+1=1=(a+1)°=ca+1 mod a®> = alc = ceven
(260 = (a+1)% —1=[(a+ 1) — 1[(a+ 1) +1]
ged((a+ 1) —1,(a+ 1) +1)=2

x|(a+1) —1=02x+1)Y -1 = (a+1)Y -1=2xP
b7l —(a+ 1) +1>(a+1)Y —1=2xt = x=1



Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)
Find all positive integers a, b,c > 1 such that a® + 1 = (a + 1)¢

© 0N RN

b=c=1,a>1is asolution. Let b > 2.
a+1=(a+1)¢=(-1) +1=0 mod a+1 = b odd
(a+1-1)° +1=b(a+1)=0 mod (a+1)> = aeven
aP+1=1=(a+1)°=ca+1 mod a®> = alc = ceven
(260 = (a+1)% —1=[(a+ 1) — 1[(a+ 1) +1]
gad((a+1) —1,(a+ 1) +1)=2

x|(a+1) —1=02x+1)Y -1 = (a+1)Y -1=2xP
b7l —(a+ 1) +1>(a+1)Y —1=2xt = x=1

The only other solution is a=2,b=c = 3.



