
Linear Diophantine Equations (LDEs)

Definition 1
An equation of the form

a1x1 + a2x2 + · · ·+ anxn = b (1)

with a1, a2, . . . , an, b integers, is called a linear Diophantine
equation (LDE).

Theorem 2
The LDE

a1x1 + a2x2 + · · ·+ anxn = b

has a solution x1, ..., xn ∈ Z if and only if gcd(a1, a2, . . . , an)|b



Quadratic Diophantine Equations (QDEs)

Definition 3
An equation of the form

n∑
i ,j=1

aijxixj = b (2)

with aij , b integers, is called a quadratic Diophantine equation
(QDE).

Example 4 (Pythagorean Equations)

The equation
x2 + y2 = z2

is a QDE. Any solution (x , y , z) of this equation for integers x , y , z
is called a Pythagorean triple.



Pythagorean Equations

Consider the Pythagorean equation:

x2 + y2 = z2. (3)

I A solution (x0, y0, z0) of Eq. (3) where x0, y0, z0 are pairwise
relatively prime is called a primitive solution.

I If (x0, y0, z0) is a solution of Eq. (3) then so are

(±x0,±y0,±z0) and (kx0, ky0, kz0).

I Therefore we are most interested in solutions (x , y , z) of Eq.
(3) with all components positive.



Pythagorean Equations

Theorem 5
Any primitive solution of

x2 + y2 = z2

is of the form

x = m2 − n2, y = 2mn, z = m2 + n2 (4)

Where m, n ≥ 1 are relatively prime positive integers.



Pell’s Equation

Definition 6
Pell’s equation has the form

x2 − dy2 = 1 (5)

where d not a perfect square.

Definition 7
We say that (x0, y0) is a fundamental solution of Pell’s equation if
x0, y0 are positive integers that are minimal amongst all solutions.



The Graph of Pell’s Equation

The equation has the fundamental solution (x0, y0) = (3,2).



Pell’s Equation

Theorem 8
Pell’s equation has infinitely many solutions. Given the solution
(x0, y0) the solution (xn+1, yn+1) is given by

xn+1 = x0xn + dy0yn, x1 = x0, n ≥ 1

yn+1 = y0xn + x0yn, y1 = y0, n ≥ 1

(6)

Example 9

The equation x2 − 2y2 = 1, has the fund. sol. (x0, y0) = (3,2). So

x2 = x2
0 + dy2

0 = 9 + 2.4 = 17, y2 = y0x0 + x0y0 = 6 + 6 = 12

is also a solution: 172 − 2.122 = 1.



General Solution of Pell’s Equation

Theorem 10
Let Pell’s equation x2 − dy2 = 1, have the fundamental solution
(x0, y0). Then (xn, yn) is also a solution, given by

xn =
1

2
[(x0 + y0

√
d)n + (x0 − y0

√
d)n]

yn =
1

2
√

d
[(x0 + y0

√
d)n − (x0 − y0

√
d)n]

(7)

Example 11

Solve x2 − 2y2 = 1. The fund. sol. is (3,2). The general solution
is:

xn =
1

2
[(3+2

√
2)n+(3−2

√
2)n], yn =

1

2
√

2
[(3+2

√
2)n−(3−2

√
2)n]



The General Form of Pell’s Equation

Definition 12
The general Pell’s equation has the form

ax2 − by2 = 1 (8)

where ab not a perfect square.

The equation

u2 − abv2 = 1 (9)

is called the Pell’s resolvent of Eq. (8)



The General Form of Pell’s Equation

Theorem 13
Let

ax2 − by2 = 1

have an integral solution. Let (A,B) solution for least positive
A,B. The general solution is

xn = Aun + bBvn

(10)

yn = Bun + aAvn

Where (un, vn) is the general solution of Pell’s resolvent
u2 − abv2 = 1.



The General Form of Pell’s Equation

Example 14

Solve

6x2 − 5y2 = 1 (11)

The fund. sol. is (x , y) = (A,B) = (1, 1). The resolvent is
u2 − 30v2 = 1, with fund. sol. (u0, v0) = (11, 2). The general
solution of the resolvent is

un =
1

2
[(11 + 2

√
30)n + (11− 2

√
30)n]

vn =
1

2
√

30
[(11 + 2

√
30)n − (11− 2

√
30)n]

The general solution of Eq. (11) is

xn = un + 5vn, yn = un + 6vn



Training Problem 1

Problem 1
Find all integers n ≥ 1 such that 2n + 1 and 3n + 1 are both
perfect squares.

Observe that

2n + 1 = x2, 3n + 1 = y2 =⇒ 3x2 − 2y2 = 1,

with 3.2 = 6 not a square in Z.
So solving this amounts to solving the general form of Pell’s
equation.



Training Problem 1

Problem 1
Find all integers n ≥ 1 such that 2n + 1 and 3n + 1 are both
perfect squares.

Observe that

2n + 1 = x2, 3n + 1 = y2 =⇒ 3x2 − 2y2 = 1,

with 3.2 = 6 not a square in Z.
So solving this amounts to solving the general form of Pell’s
equation.



The Negative Pell’s Equation

Definition 15
The negative Pell’s equation has the form

x2 − dy2 = −1 (12)

where d not a perfect square.

Theorem 16
Let (A,B) be the smallest positive solution to Eq. (12). Then the
general solution to Eq. (12) is given by

xn = Aun + dBvn

yn = Aun + Bvn

(13)

where (un, vn) is the general solution of u2 − dv2 = 1.
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Training Problem 2

Problem 2
Find all pairs (k ,m) such that

1 + 2 + · · ·+ k = (k + 1) + (k + 2) + · · ·+ m.

Adding 1 + 2 + · · ·+ k to both sides of the above equality we get

2k(k + 1) = m(m + 1) ⇐⇒ (2m + 1)2 − 2(2k + 1)2 = −1.

The associated negative Pell’s equation is x2 − 2y2 = −1 with the
minimal solution (A,B) = (1, 1).
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Training Problem 3

Problem 3 (Romanian M. Olympiad, 1999)

Show that the equation x2 + y3 + z3 = t4 has infinitely many
solutions x , y , z , t,∈ Z with the greatest common divisor 1.

Start from the equality

[13 + 23 + · · ·+ (n − 2)3] + (n − 1)3 + n3 =

(
n(n + 1)

2

)2

[
(n − 2)(n − 1)

2

]2
+ (n − 1)3 + n3 =

(
n(n + 1)

2

)2

.

Do there exist infinitely many integers n ≥ 1 such that n(n+1)
2 is a

perfect square?

n(n + 1) = n2 + n = 2m2 ⇐⇒ 4n2 + 4n = 8m2

⇐⇒ (2n + 1)2 − 2(2m)2 = 1

This is Pell’s equation, which has infinitely many solutions.
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Training Problem 4

Problem 4 (Irish M. Olympiad, 1995)

Determine all integers a such that the equation x2 + axy + y2 = 1
has infinitely many solutions.

Rewrite the given equation in the form

(2x + ay)2 − (a2 − 4)y2 = 4 (14)

1. If a2 − 4 < 0 then we have a finite number of solutions.

2. If a2 − 4 = 0 the equation becomes 2x + ay = ±2 with
infinitely many solutions.

3. If a2 − 4 > 0, then a2 − 4 cannot be a perfect square and so
the Pell’s equation u2 − (a2 − 4)v2 = 1 has infinitely many
solutions. Letting x = u − av , y = 2v , we also have infinitely
many solutions for a2 − 4 ≥ 0
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Training Problem 5

Problem 5 (Bulgarian M. Olympiad, 1999)

Solve x3 = y3 + 2y2 + 1 for integers x , y.

If y2 + 3y > 0 then

y3 < x3 = y3 + 2y2 + 1 < (y3 + 2y2 + 1) + (y2 + 3y) = (y + 1)3,

which is impossible.
Therefore

y2 + 3y ≤ 0 =⇒ y = 0,−1,−2,−3.

The solution set is (1, 0), (1,−2), (−2,−3).
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Training Problem 6

Problem 6
Find positive integers x , y , z such that xy + yz + zx − xyz = 2

We may assume that x ≤ y ≤ z .

1. If x = 1 then the equation is y + z = 2 =⇒ (x , y , z) = (1, 1, 1)

2. If x = 2 then the equation is
2y + 2z − yz = 2 = (z − 2)(y − 2) =⇒ z = 4, y = 3.

3. If x ≥ 3 then x , y , z ,≥ 3 which yield

xyz ≥ 3xy
xyz ≥ 3yz
xyz ≥ 3zx

Adding the above relations it follows that

xyz ≥ xy + yz + zx =⇒ xy + yz + zx − xyz < 0 6= 2.
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Training Problem 7

Problem 7
Find the positive integers x , y , z such that 3x + 4y = z2.

3x = z2 − 4y = (z − 2y )(z + 2y ).

Then

z − 2y = 3m and z + 2y = 3n, m > n ≥ 0,m + n = x .

Subtracting,

2y+1 = 3n − 3m = 3m(3n−m − 1)

=⇒ 3m = 1, n = x =⇒ 3n − 1 = 2y+1

1. If y = 0, then n = x = 1 and z = 2.

2. If y ≥ 1 then x = n = 2, y = 2, z = 3n − 2y = 5.
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Training Problem 8

Problem 8
Find the positive integers x , y , z such that 3x − 1 = y z .

If z is even we get a contradiction. So z = 2k + 1. Now

3x = y z+1 = y2k+1+1 = (y+1)(y2k−y2k−1+y2k−2−· · ·+y2−y+1).

Then y ≡ −1 mod 3.

y2k−y2k−1+· · ·+y2−y+1 ≡ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
2k +1

≡ (2k+1) ≡ 0 mod 3.

Therefore z = 2k + 1 = 3p, some p:

3x = y3p + 1 = (yp + 1)(y2p − yp + 1) =⇒ yp + 1 = 3s .

3x = 1 + y3p = 1 + (3s − 1)3

= 33s − 3.32s + 3.3s

= 3s+1(32s−1 − 35 + 1)

=⇒ 32s−1 − 3s = 0 =⇒ s = 1

=⇒ yp = 3s − 1 = 2 =⇒ y = 2, p = 1, x = 2, z = 3.
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If z is even we get a contradiction. So z = 2k + 1. Now

3x = y z+1 = y2k+1+1 = (y+1)(y2k−y2k−1+y2k−2−· · ·+y2−y+1).

Then y ≡ −1 mod 3.

y2k−y2k−1+· · ·+y2−y+1 ≡ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
2k +1
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Training Problem 9

Problem 9 (Taiwanese M. Olympiad, 1999)

Find all positive integers a, b, c ≥ 1 such that ab + 1 = (a + 1)c

1. b = c = 1, a ≥ 1 is a solution. Let b ≥ 2.

2. ab + 1 = (a + 1)c ≡ (−1)b + 1 ≡ 0 mod a + 1 =⇒ b odd

3. (a + 1− 1)b + 1 ≡ b(a + 1) ≡ 0 mod (a + 1)2 =⇒ a even

4. ab + 1 ≡ 1 ≡ (a + 1)c ≡ ca + 1 mod a2 =⇒ a|c =⇒ c even

5. (2x)b = (a + 1)2y − 1 = [(a + 1)y − 1][(a + 1)y + 1]

6. gcd((a + 1)y − 1, (a + 1)y + 1) = 2

7. x |(a + 1)y − 1 = (2x + 1)y − 1 =⇒ (a + 1)y − 1 = 2xb

8. 2b−1 = (a + 1)y + 1 > (a + 1)y − 1 = 2xb =⇒ x = 1

9. The only other solution is a = 2, b = c = 3.
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